
Copyright © 2015 – 2024 Silly Moose, LLC. All rights reserved.
Powered by KnowledgeOwl knowledge base software.

API calls in snippetsAPI calls in snippets
Last Modified on 01/31/2024 11:53 am EST

Sometimes you might want to extend KnowledgeOwl's built in functionality by utilizing client side API calls in your
knowledge base.

Previously, this involved constructing an AJAX call that contains a KnowledgeOwl API key for authentication.
However, by exposing your API key on the client side (even when restricted to GET access only), you are opening
yourself up to unintended reader behavior.

KnowledgeOwl API Merge CodeKnowledgeOwl API Merge Code
To prevent this issue, we have added the ability to construct an API merge code within a snippet's content. On
page render, the merge code will be replaced with a unique, single use URL that does not contain your API key or
any account specific information.

Constructing the Merge CodeConstructing the Merge Code

Let's take a look at how to construct this merge code and then what we can do with it. Below is the template for
the merge code.

[ko_api(API Object|{JSON API filter})]

If we break the above template down into its parts, we get the following 3 required pieces.

1. The outer wrapper: [ko_api()]The outer wrapper: [ko_api()]
This wrapper and everything within it will be replaced server side with a unique URL at the time of page
rendering.

2. The API ObjectThe API Object
The first part of the inner required information denotes which API object you are going to be querying. For
example, if you want query for categories, you would use categorycategory followed by the pipe symbol | | .

3. JSON API FilterJSON API Filter
The second part of the inner required information needs to be a JSON formatted string containing a valid API
filter. Let's say we want to query for the 5 newest categories in our knowledge base that aren't deleted. We
can construct our JSON string like so:

//project_id = Knowledge base ID
{"project_id": "123456", "status": "active", "limit": 5, "sort": {"date_created": 1}}

Copyright © 2015 – 2024 Silly Moose, LLC. All rights reserved.
Powered by KnowledgeOwl knowledge base software.

When we put the parts from above together, we get the following fully constructed merge code:

[ko_api(category|{"project_id": "123456", "status": "active", "limit": 5, "sort": {"date_created": 1}})]

Knowledge Base VariablesKnowledge Base Variables

The API merge code is replaced server side so you will not be able to use Javascript variables within it. However,
we have created the following variables that you can use to reference information about the current page and the
current reader that is logged in:

Variable NameVariable Name Variable ValueVariable Value Example JSONExample JSON

%cur_kb_id%
The ID of the knowledge base that
is currently being viewed.

"project_id": "%cur_kb_id%"

%cur_cat_id%

If viewing a category: returns the
ID of the category currently being
viewed;
If viewing an article: returns the ID
of the category in which the article
is contained. If the article is in a
subcategory, this is the category
immediately above this article in
the hierarchy, not it's ultimate top-
level parent.

"category": "%cur_cat_id%"

%cur_top_cat_id%
The ID of the top most parent
category that the current article or
category is in.

"category": "%cur_top_cat_id%"

%cur_parent_cat_ids%
Array of all parent category IDs
that the current article or category
is in.

"category": {"$in":
"%cur_parent_cat_ids%"}

%cur_art_id%
The ID of the article that is
currently being viewed

"id": "%cur_art_id%"

%cur_art_tags%
Array of tag IDs that are in use on
the currently viewed article

"tags": {"$in": "%cur_art_tags%"}

%cur_art_permalink%
The permalink of the currently
viewed article

"url_hash": "%cur_art_permalink%"

%cur_reader_id%

The ID of the currently logged in
reader; will filter results by content
that reader has access to; will not
work for authors who are also
readers

"reader_id": "%cur_reader_id%"

Copyright © 2015 – 2024 Silly Moose, LLC. All rights reserved.
Powered by KnowledgeOwl knowledge base software.

%cur_reader_groups%
Array of reader groups IDs that the
currently logged in reader is
assigned to

"reader_roles":
"%cur_reader_groups%"
NB: The merge code itself
surrounded by " is all you need - an
$in comparison is already included
for you in the merge code

%cur_reader_username%
The username of the currently
logged in reader

"username":
"%cur_reader_username%"

%cur_search_term% The "phrase" parameter in the URL "phrase": "%cur_search_term%"

Variable NameVariable Name Variable ValueVariable Value Example JSONExample JSON

Using the Merge CodeUsing the Merge Code

Now that we have our merge code, let's look at how we can use it within our snippet content to get the
information requested. Below is a script that console logs the information returned from our API call.

<script>
 $(function() {
 $.get('[ko_api(category|{"project_id": "123456", "status": "active", "limit": 5, "sort": {"date_created": 1}})]',
 function(apiData) {
 //do something with the returned data
 console.log(apiData);
 }).fail(function(error) {
 //uh oh something went wrong. Alert the end-user or otherwise handle the error
 });
 });
</script>

As you can see, the merge code is used in place of the AJAX URL, but the rest of the jQuery code remains exactly
the same. When the above code is rendered to the page, the merge code is replaced with a safe, valid URL, and
results in something like the following.

<script>
 $(function() {
 $.get('/help/ko-api/mid/9999aaaaadsfsdfsdf',
 function(apiData) {
 //do something with the returned data
 console.log(apiData);
 }).fail(function(error) {
 //uh oh something went wrong. Alert the end-user or otherwise handle the error
 });
 });
</script>

Now let's use some of the knowledge base variables listed above to get all of the other articles that are in the
currently viewed article's category.

Copyright © 2015 – 2024 Silly Moose, LLC. All rights reserved.
Powered by KnowledgeOwl knowledge base software.

<script>
 $(function() {
 //get all published or needs review articles in the current category except for the one currently being viewed
 $.get('[ko_api(article|{"project_id": "%cur_kb_id%", "status": {"$in": ["published", "review"]}, "category": "%cur_cat_id%", "url_hash": {"$ne": "%cur_art_permalink%"}, "sort": {"index": 1}})]',
 function(apiData) {
 //do something with the returned data
 console.log(apiData);
 }).fail(function(error) {
 //uh oh something went wrong. Alert the end-user or otherwise handle the error
 });
 });
</script>

Working with article statusWorking with article status

If you're pulling a list of articles via API snippet, the odds are pretty good that you're going to be using the status
field. While most of our other API endpoints have a status field that is "active" or "deleted", the publishing status on
articles has two statuses that could be considered active: Published ("published" in the API) and Needs Review
("review" in the API).

If you'd like to filter your article API call to get status, instead of using "status": "active" here, you'd want to use an in
operator and look for the status to be in one of those two: "status": {"$in": ["published", "review"]} . You can see an
example of this in action in the final code block in the section before this one.

API calls with paged resultsAPI calls with paged results

Sometimes your API call may have multiple pages of results. In this case, we will return the next API call URL as part
of the returned data. The URL will be located in the "page_stats" array like so:

page_stats: {
 total_records: 203
 total_pages: 3
 next_page: 2
 next_page_url: /help/ko-api/mid/9999aaaaadsfsdfsdf
}

Here's a template to get you started with paged API snippet calls:

http://support.knowledgeowl.com/help/query-operators

Copyright © 2015 – 2024 Silly Moose, LLC. All rights reserved.
Powered by KnowledgeOwl knowledge base software.

<script>
 $(function(){
 //first page of results API call
 var firstUrl = '[ko_api(article|{"project_id": "%cur_kb_id%","_fields": ["name"], "limit": 75})]';

 //function to get multiple pages of results from API
 var getArticles = function(curUrl) {
 $.get(curUrl, function(data) {
 console.log(data);
 $.each(data['data'], function(index, value){
 //do something with api objects
 });
 //now fetch the next page of results if there is one
 //using the URL returned from the previous API call
 if(data['page_stats']['next_page_url'])
 getArticles(data['page_stats']['next_page_url']);
 }).fail(function(error) {
//you failed!
 console.log(error);
 });
 }

 //get the first page of results;
 getArticles(firstUrl);
 });
</script>

Requirements for useRequirements for use

API merge codes can ONLYONLY be used for GETGET calls. Attempts to POST, PUT, or DELETE will return an
error.

You must have at least one active API key in your account with ONLY ONLY GET permission. If you do not have an
available API key that meets this requirement, the merge code URL will return an error.

The JSON string containing the API filter must contain a valid knowledge base ID in the format of {"project_id":
"1234"}.

DO NOTDO NOT include your API key in the merge code JSON. If you include an API key in the JSON, the merge code
URL will return an error.

API calls in snippets do not showdo not show in article Preview mode. You'll need to publish the article to view the results
of the API snippet.

