knowledgeow!
Create REST APl documentation

Last Modified on 10/02/2025 10:36 am EDT

Learn how to create REST APl documentation using KnowledgeOwl and Redoc.

REST APl documentation in KnowledgeOwl

When creating APl documentation, very often you'll want to be able to automatically generate docs from a
specification file or from the code. KnowledgeOwl does not have built-in support for this.

However, it is possible to integrate with other tools that do. This guide covers how to set up REST API
documentation in KnowledgeOw! using an OpenAPI specification file (also known as Swagger spec) and Redoc
(using its HTML element method). It is the same technique we use for our own endpoint reference docs.

Prerequisites

e You need to have an OpenAPI spec file that is compatible with Redoc. If your spec file is version 3.0, make
sure to use Redoc 2.0. Refer to Redoc's version guidance for more information.

e |f you want to customize the look and feel of your APl docs, you will need some knowledge of HTML and
CSS and how to use your browser's developer tools.

e You should familiarize yourself with ReDoc's configuration options.

Create your APl documentation

1. Create a new article, or a custom content category.

2. In Display Settings, select Remove feedback ability, Remove comment ability, and Remove "Download to
PDF" icon.

3. Host your spec file, choose your Redoc source, and make a note of the URLs: your specification file, and the
Redoc JavaScript file, must be hosted somewhere so that your page can load them. You can choose to host

the spec file anywhere you want, and you can use Redoc's own recommended CDN to load the JavaScript:
https://cdn.jsdelivr.net/npm/redoc@latest/bundles/redoc.standalone.js

However, you can also use the KnowledgeOwl File Library to host both files. Refer to Files and images for
information on uploading files and getting the URLs.

%) When using the KnowledgeOwl file library, you need to edit the URLs. The full URL of a file
(has this format: https://<random-id>.cloudfront.net/app/image/id/<id>/n/<filename>
Remove everything before ‘app’, giving you a URL with this format:

Copyright © 2015 - 2025 Silly Moose, LLC. All rights reserved.
Powered by KnowledgeOwl knowledge base software.

https://www.openapis.org/
https://redoc.ly/docs/redoc/quickstart/intro/
https://redoc.ly/docs/redoc/quickstart/html/
http://support.knowledgeowl.com/help/api-endpoint-reference
https://github.com/Redocly/redoc#version-guidance
https://github.com/Redocly/redoc#configuration
http://support.knowledgeowl.com/help/create-new-article
http://support.knowledgeowl.com/help/custom-content-categories
http://support.knowledgeowl.com/help/file-images

/app/image/id/<id>/n/<filename>.

4. Create a snippet and add the following in the Code Editorview. Replace ‘url-to-your-spec-file' with the URL
of your OpenAPI specification file, and " with the URL to redoc.standalone.js (this may be your own copy, or
a call to a CDN).

<redoc disable-search spec-url="url-to-your-spec-file'></redoc>
<script src=""></script>

This adds the <redoc> custom element, which contains the Redoc configuration options and spec file URL. It
then loads the Redoc JavaScript. When a reader visits the article, the script runs and renders the spec file.

%) We recommend including the disable-search option. You can choose to add other
configuration options to suit your needs.
5. Under Visibility, select Hide from PDFs.

6. Save the snippet. It should now look like this:

Snippet Name

API - External
Merge Code Name Merge Code Value Visibility
aPlExternal {{snippet.aPI|External}} Hide from PDFs

Limited to alphanumeric characters, dashes, and underscores q q
O Include snippet content in

Snippet Description article blurbs

This snippet pulls in the spec file and Redoc. Redoc then renders the file (on page load) .
Restrict to Reader Groups

None / Show to all readers =
Snippet Content -

All javascript and css needs to be wrapped in the proper tags - <script>, <style>, etc. o
<redoc -
disable-search o
json-sample-expand-level="0" @]
spec-url="'/app/image/id/ /n/knowledgeowl-external.json'> o

</redoc>
<script src="/app/image/id/ /n/redocstandalone.js"> </script> @]

7. Insert the snippet into the article or category you created in step 1.
8. Set the Publishing Status to Published.
9. Select Save. You can now view the documentation.

10. Optional: you can add custom styling. Some changes, such as expand/collapse behaviors, hiding elements
of the Redoc theme, and so on, should be controlled using the Redoc configuration options. You can also
add custom CSS to change things like colors. You could add your custom CSS to the snippet you created in
step 4, or in its own snippet.

Copyright © 2015 - 2025 Silly Moose, LLC. All rights reserved.
Powered by KnowledgeOwl knowledge base software.

https://github.com/Redocly/redoc#configuration
https://github.com/Redocly/redoc#configuration

Custom styles

There are two ways to customize the look and feel of Redoc's output:

e Redoc's theming options. You can set these on the <redoc> element. Note that the available options for the
open source community edition are limited. As of 24 September 2021, there seems to be a bug affecting this
functionality. You can follow the issue on GitHub. If you use this option, you may still need some custom CSS
to override your knowledge base's default styles.

e Custom CSS, added to the article or category. This is the option we chose for our own docs. It gave us more
fine-grained control of the look and feel, and avoided issues caused by the possible bug linked above.

sure you are hosting your own copy of redoc.standalone.js, and be aware that if you upgrade the

l Redoc's class names change with every new release. If you go with the custom CSS option, make
& Redoc version, you will need to fix your styles.

To customize the look and feel of our own docs, we created a snippet to hold the CSS. This allows us to reuse it if
we wish. We then inserted the CSS snippet into our APl endpoint article.

You can find out what CSS classes to target by using your browser's development tools to inspect the page source
(you will need to create the documentation first, so that you can inspect it).

The following sections describe some of our custom CSS, as an example to get you started on your own custom
styling.

Overriding KnowledgeOwl styles

The first thing we needed to do was override some of the styling inherited from the knowledge base theme.
These changes ensure the APl docs can use the full width of the screen, remove unwanted whitespace (padding
and margin) around the edges, and hide some knowledge base elements that we didn't want on the page, such as
the header and breadcrumbs. Your knowledge base theme may use different class names.

Copyright © 2015 - 2025 Silly Moose, LLC. All rights reserved.
Powered by KnowledgeOwl knowledge base software.

https://redoc.ly/docs/api-reference-docs/configuration/theming/
https://github.com/Redocly/redoc/pull/1492#issuecomment-926742791

/* Allow the API docs to use the full width of the browser */
.ko-content-cntr, .hg-article {
max-width: 100% !important;

¥

/* Remove padding and margins */

.hg-minimalist-theme .hg-article-body {
padding-bottom: 0;

}

.hg-article-body p {
margin: 0;

¥

.ko-site-footer {
padding: 0O;
}

#ko-article-cntr {
padding-top: 0O;
}

/* Hide the back to top button */
.back-to-top {
display: none !important;

}

/* Hide the header, breadcrumbls, and article footer */
.hg-article-header, .hg-breadcrumbs, .hg-article-footer {
display: none;

}

Overriding Redoc styles

Next, we targeted various Redoc classes to add our brand colors.

Copyright © 2015 - 2025 Silly Moose, LLC. All rights reserved.
Powered by KnowledgeOwl knowledge base software.

/* Right hand column background color */
.IQAZHu, .dAURIS {
background-color: #1D284F;

}

/* Expanding text buttons under 'Responses' - brand colors and improved alignment */
/%200 */

JjekxwK {

background-color: #F8FBF9;
display: flex;

flex-direction: row;
align-items: flex-end;
justify-content: flex-start;

b

JjekxwK > * {

margin: 2px;

}

/* Error */

.epQWrk {
background-color: #F4E2E2;
border: 1px solid #E6ADA9;
color: #FD4339;

display: flex;

flex-direction: row;
align-items: flex-end;
justify-content: flex-start;

}

.epQWfk > * {

margin: 2px;

}

/* Verb labels in left and right hand column - colors */
.bGXNhC, .ifwede.post {
background-color: #017AFF;
b

.gPqqEc, .ifwede.get {
background-color: #5c995b;
}

.hAtMod, .ifwede.put {
background-color: #9E57B4;
b

.eZVHeg, .ifwede.delete {
background-color: #FD4339;

}

Limitation: content security policy header

If you have content security policy headers enabled in your knowledge base security settings, you cannot host the
files in the KnowledgeOwl file library. The security settings prevent loading the JSON or YAML spec file.

You can still load the files from an external server, but must make sure they load over HTTPS. For example, Redoc's
own example will work, so long as you update the URL to the example spec to use HTTPS:

Copyright © 2015 - 2025 Silly Moose, LLC. All rights reserved.
Powered by KnowledgeOwl knowledge base software.

http://support.knowledgeowl.com/help/http-response-headers
https://github.com/Redocly/redoc#deployment

<redoc spec-url="https://petstore.swagger.io/v2/swagger.json'></redoc>
<script src="https://cdn.jsdelivr.net/npm/redoc@latest/bundles/redoc.standalone.js"> </script>

Understand Redoc's standalone API docs

Redoc offers several ways to create APl docs. For our own documentation, we use a custom HTML element and
Redoc's ‘redoc.standalone.js' script. This works by loading the spec file and any configuration options set in the
custom element, then assembling the documentation and applying the Redoc theme. It does this every time the
page loads.

There are pros and cons to this approach. It is relatively simple to implement, requires no additional software or
build processes, and the look and feel are fairly easy to customize by adding additional CSS. However, be aware
that large spec files will take some time to load and build, resulting in a loading screen.

An alternative method is to generate the documentation using the Redoc CLI. You can then upload the generated
HTML into the file library (or host it yourself), and include it in your knowledge base using a URL redirect category
or article. This removes the build step on page load, meaning faster load times and no loading screen. However, it
makes it harder to apply custom styling (you are limited to the theming options supported by Redoc, which are
minimal for the open source community edition). It also adds a build process that you must manage, for example
installing Node.js and the Redoc CLI on your computer.

Next steps

This article has described one method of creating REST APl documentation from an OpenAPI spec in
KnowledgeOwl. If you want to use it, it's worth spending time reading Redoc's README and documentation. You
can also view our own endpoint docs as an example.

If you don't use OpenAPI as your API specification, consider looking for other tooling similar to Redoc: if it can
either pre-generate HTML, or provides a way to generate in the browser, then it may be possible to use it
alongside KnowledgeOwl. We'd love to hear from you if you discover any interesting tools!

Copyright © 2015 - 2025 Silly Moose, LLC. All rights reserved.
Powered by KnowledgeOwl knowledge base software.

http://support.knowledgeowl.com/help/api-endpoint-reference
https://redoc.ly/docs/redoc/quickstart/cli/
https://redoc.ly/docs/api-reference-docs/configuration/theming/
https://github.com/Redocly/redoc
https://redoc.ly/docs/redoc/quickstart/intro/
http://support.knowledgeowl.com/help/api-endpoint-reference

